

Physics B (Advancing Physics)

Advanced GCE A2 7888

Advanced Subsidiary GCE AS 3888

Mark Schemes for the Units

January 2007

3888/7888/MS/R/07J

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2007

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

 Telephone:
 0870 870 6622

 Facsimile:
 0870 870 6621

 E-mail:
 publications@ocr.org.uk

CONTENTS

Advanced GCE Physics B (Advancing Physics) (7888) Advanced Subsidiary GCE Physics B (Advancing Physics) (3888)

MARK SCHEMES FOR THE UNITS

Unit	Content	Page
2860	Physics in Action	1
2861	Understanding Processes	11
2863/01	Rise and Fall of the Clockwork Universe	19
2864/01	Field and particle Pictures	27
2865	Advances in Physics	37
*	Grade Thresholds	45

Mark Scheme 2860 January 2007

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

SECTION C

The outline mark schemes given here will be given more clarity by the papers seen when the examination is taken. Some of these scripts will be used as case law to establish the quality of answer required to gain the marks available.

It is not possible to write a mark scheme that anticipates every example which students have studied.

For some of the longer descriptive questions three marks will be used (in scheme called the 1/2/3 style).

- 1 will indicate an attempt has been made
- 2 will indicate the description is satisfactory, but contains errors
- 3 will indicate the description is essentially correct

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1 Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3 The following annotations may be used when marking. <u>No comments should be written on</u> scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4 The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.
- 5 In cases where candidates are required to give a specific number of answers, (eg 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6 Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7 Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8 An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

m	= method mark								
S	= substitution mark								
е	= evaluation mark								
1	= alternative and acceptable answers for th								
;	= separates marking points								
NOT	T = answers which are not worthy of credit								
()	= words which are not essential to gain create								
()	= (underlining) key words which must be up	sed to a:	ain credit						
ecf	= (undefining) key words which <u>must</u> be used to gain credit								
	= alternative wording								
ora	= or reverse argument								
On	Expected Answers	Marks	Additional	quidanco					
QII	Expected Answers	IVIAL KS	Auditional	guidance					
	Section A								
	Section A								
1	$a \left(1 - \frac{1}{2} \right) \left(1 - \frac$	3							
	a) JS, D) AS, C) 22 III	3	ivelere by ventie						
2(a)	one complete oscillation of lowest f		Judge by vertic	als X act an have					
(D)		1	bare answer C	IK ect on box					
	(eg time per cycle = 44 ms/6 cycles) =	1	± 10%						
(C)	7.(3) ms		evaluation ect	on 1/ (b)					
	(accept between 7 and 8 ms)								
	(<i>f</i> = 1/ <i>T</i>) accept between 143 and 125 (
	Hz)								
3(a)	$\lambda = v/f / 1500/2.5 \times 10^6$; 6.(0) x 10 ⁻⁴ (m)	2	method; evaluation						
(b)	at least 3 more wavefronts showing	1	accept between 0.9 and 1.5						
-	correct direction and an increased		cm constant to \pm 10%						
	constant spacing judged by eye		NOT gets						
(c)		1	less/lost/deflec	cted/dispersed					
	reflects/is absorbed/causes heating/is								
	dissinated/lost as heat								
4(a)	ceramics	1							
(b)	(compressive) stress/E/A/pressure AND to	1	NOT force/ten	sion					
(6)	hreak/vield/shatter			3011					
(c)	because too brittle/not tough/cracks (in	1	accent shatter	^C					
(0)	tension)		act (accent/re	s liect) instified					
				Jeer / Justinea					
	eci ey un motolo/compositos/rubbors/polymers/wood								
	metals/composites/rubbers/polymers/wood								
-		4							
5	4.(0) (mS)	1	Use du avalu	<i></i>					
(a)	I = G V = 4.0 mS x 6.0 V; = 24 mA/0.024	2	method; evalu	ation					
(b)	(A)	<u> </u>	allow ect on G	from (a)					
6	(10 ⁻² /10 ⁻⁹) ² OR 10 ¹⁻⁺ bits; 10 ¹⁻⁺ /8 bytes =	2	method accep	t 10'⁺;					
	12.5 Tbytes		evaluation						
7(2)	(reconstructed signal shows) loss of high	1	accent fewer h	armonice					
7 (a)	f/detail/information/peaks and troughs OP								
	is emosther AW		frequency	enower					
(h)		4		malaa					
(d)		<u> </u>	NOT more sar	npies					
	sample more frequently/use more								
	levels/more bits per sample								
		20							
	Total section A								

Qn	Expected Answers	Marks	Additional
			guidance
8(ai) (ii) (iii) (bi) (ii)	Section B (Force is) <u>proportional</u> (to extension)/ $F \propto x /$ linear through origin proportional graph of double gradient (same modulus intensive property of) same material/modulus not depend on dimensions NOT same wire $\sigma = (F/A) = 90/(2.5 \times 10^{-7}); = 3.6 \times 10^{8}$ (Pa) $\varepsilon = (x/L) = 4.0 \times 10^{-3}/2.0; = 2.0 \times 10^{-3}$	1 1 1 2 2 1	NOT just linear through (2.0mm, 90N) accept correct
	$E = (\sigma/\epsilon) = 3.6 \times 10^8/2.0 \times 10^{-3} = 1.8 \times 10^{11};$ Pa/ N m ⁻²	<u>1</u> 9	algebra <i>L</i> and <i>x</i> both ¹ /2'd substitution; evaluation evaluation evaluation ecf on (bi) unit mark stands alone
9(ai)	I = V/R = 12/2.5 = 4.8 A	1	evaluation
(1)	total $R = 2.7 \Omega$; ecf $I = (V/R = 12/2.7) = 4.4(4) A$	2	SF penalty
(11.2)	(circuit) resistance has increased	1	on recurring
(111)	$0 \Omega/as small as possible/negligible NOT low$	I	accept < 0.2
(bi) (ii 1)	equal resistors/share p.d. equally/1/2 total p.d. each conductance is doubled/in parallel conductance adds/1/ <i>R</i>	1	Ω
(" O)	+ $1/R = 2/R$ and R_{total} is halved/or calculated	1	NOT just
(2)	$(V_{AB}) = 12 \times (12.5/37.5); = 4.(0) V$	2	shared
(3)	Vmeter drops resistance of its part of circuit so less p.d.	1	conducting
(111)	$\infty \Omega$ /as large as possible/(voltmeter resistance) >> resistance of component it is measuring across	<u>1</u> 11	path is twice as good method; evaluation accept $R_{AB} < R_{BC}$ accept > 25 k Ω
10ai	$400 \times 200 \times 5 = 4 \times 10^5$ bits;/8 = 5 x 10^4 bytes	2	method;
	(data) compression/any compressed image file format $(2^5) = 22$	1	evaluation
(II) (iii)	(2) = 32 A = 80 + 10 pixels: 0 16 + 0.02 m act op close act	2	
(iii) (bi)	B is further: 3 x distance OR subtends smaller andle: 1/3	2	accept 2 ⁵
(ii)	at camera OR at B pixel represents larger size; x 3	-	correct est. 2
			marks
			in words or diagrams
			accept 6 mm pixel ⁻¹
			2 ^{na} mark for
			quantitative explantation

(C)	1/ v = 1/ (-0.85) + 60; = 58.8; v = 1/ (58.8) = 0.017m	<u>3</u>	correct ans.
		11	3 marks
11ai	$(I = \varepsilon / R = 6/10) = 0.6(0)$ (A)	1	
)			
(ii)	(<u>+</u>) 0.60 x 5/100; = 0.03 (A)	2	method;
			evaluation
(bi)	variations > 5%/up to 50%;	2	reward any
	(actual) results always lower than the expected		two different
	results/show systematic error; not <u>+</u> errors/not random	-	points
(ii)	error	2	
	resistance is greater than predicted/p.d. (across the		expect
	terminals) is reduced; for all readings		quality
<i>/</i>			reasoning
(111)	eg current is half predicted so resistance is doubled;	1	method;
	so $r = R = 2 \Omega$	1	evaluation
	OR r = (ε - <i>IR</i>)/ <i>I</i> = (6 – (1.5 x 2))/1.5; = 2.(0) Ω	•	
		<u>9</u>	any valid
		40	method/data
	Total Section B	40	look at graph
			values

Expected Answers	Marks	Additional guidance
Section C		
eg FAX; telephone cable/electromagnetic wave	2	
accept block/system diagrams/direct representations 1 mark for clear indication of info: gathered/encoded; transmitted; stored/displayed and fourth mark for further	2 2	diagrams clearly labelled to gain credit max 1 /4 for gathering info only
quality somewhere eg FAX uses scanner; to code script into 0/1 pixels; transmitted on telephone wires; different frequencies 0/1; stored in memory at receiving phone/pc as pixel codes 0/1; displayed by printing pixels in order/good for black and white text or graphics but not		Illustrates basic and possible extension marks
greyscale eg speed of e/m signals on wires about 2 x 10 ⁸ m s ⁻¹	1	award estimates to an order of magnitude
(= speed (i) x 10^{-6}) eg = 200 m eg 64 000 (bit s ⁻¹) time = 8 x $10^{6}/(i)/= 8 \times 10^{6}/(64000)$; = 1.25 x 10^{2} s increasing the carrier frequency/bandwidth of signal	1 2 1 <u>1</u>	method; evaluation expect quality
another suggestion or detail relevant to their example: eg increasing the scanning rate for bottleneck part of system	13	
eg silver sulphide Ag ₂ S for a nano-switch	1	relevant application
two relevant properties named eg conductivity; reduction of Ag ions to Ag metal	2	accept non-physical properties : economic/chemical/aesthetic
1 mark for simple property explanations 2 for quality in one, explanations linked to application eg solid Ag ₂ S conducts due to mobile Ag ions; deposition of metallic Ag by reversible electron capture	3	max 2 marks for each explanation

appropriate scale eg 0.1 nm per atom	1	
1/2/3 style for labelled diagram and text	3	The silver atoms move in response to a small voltage between the ionic Ag ₂ S surface and the platinum metal electrode. This produces a fast (10 MHz) but reversible nano-
Ag ₂ S		switch, which changes from on/off with the sense of the applied voltage, which can be as small as 10 mV.
1/2/3 style for explanation of one chosen property	<u>3</u> 13	
Quality of written communication	<u>4</u>	
Total Section C	40	

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section C of the paper.

4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

Mark Scheme 2861 January 2007

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as *error carried forward*: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

SECTION C

The outline mark schemes given here will be given more clarity by the papers seen when the examination is taken. Some of these scripts will be used as case law to establish the quality of answer required to gain the marks available.

It is not possible to write a mark scheme that anticipates every example which students have studied.

For some of the longer descriptive questions three marks will be used (in scheme called the 1/2/3 style).

- 1 will indicate an attempt has been made
- 2 will indicate the description is satisfactory, but contains errors
- 3 will indicate the description is essentially correct

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1 Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3 The following annotations may be used when marking. <u>No comments should be written on</u> scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4 The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.
- 5 In cases where candidates are required to give a specific number of answers, (eg 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6 Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7 Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8 An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

-

m s e ; NOT () ecf AW ora	 method mark substitution mark evaluation mark alternative and acceptable answers for the same marking point separates marking points OT = answers which are not worthy of credit words which are not essential to gain credit (underlining) key words which <u>must</u> be used to gain credit error carried forward <i>N</i> = alternative wording a = or reverse argument 						
			Additional guidance				
(a)	B∢	1					
(b)	A✓	1					
(C)	C✓	1					
2(a)	$60 \times 9.8 \times 1.7 \checkmark_{m s} = 1000 \checkmark_{e} (J)$	2	accept g = 10 N kg ⁻¹				
(b)	Idea of increased distance/time to stop \checkmark	2					
	Idea of work done = force x distance/or idea of						
3(2)	$F=ma - decreased rate of deceleration \checkmark$	1	all correct required				
J(a)	A - led, b - gleen, C - blde v	1	accept R G B				
(b)	for using E = hf (hc/ λ) $\checkmark_{m,s}$ = 3.8 x 10 ⁻¹⁹ (J) \checkmark_{e}	2	watch for power of ten				
4(a)	Amplitude/frequency/wavelength ✓✓	2	Only two from list				
(b)	velocity (speed)/direction/shape (of the		•				
	wave)/both <u>start</u> in phase/both have a constant amplitude ✓	1					
5	$\sin \theta x \sqrt{V} = \text{constant } \checkmark_{m}$	1	treat as independent				
	$0.36; 0.35; 0.35 (11.39, 11.00, 11.03) \checkmark_{e}$	1	marks				
	(lest of ALL three pieces of data for the mark) conclusion consistent with test result \checkmark	1	conclusion (always)= 0				
			for test on only two				
- ()		_	pieces of data				
6(a)	$2.0 = \frac{1}{2} \times 9.8 \times t^{2}$ used $\checkmark_{m,s} t = 0.638 \checkmark_{e}$	2	allow for ecf				
(b)	horizontal velocity = 7.7/0.64 $\checkmark_{\rm m}$ = 12 $\checkmark_{\rm e}$ (m s ⁻¹)	2	0.6 s gives 13 m s ⁻¹				
			(12.8)				
	Section A Total	20					

7(a)	= $3.0 \times 10^8 / 1.0 \times 10^9 \checkmark_{m, s} = 0.3 \text{ m} \dots \checkmark_{e}$	2	
(b)(i)	path difference is whole no. of wavelengths ✓ waves superimpose in phase/constructive	2	accept answers in terms of phase
(ii)	extra <u>path difference</u> (/2) ✓	2	don't accept 'not in
(iii)	waves 'out of phase'/destructive interference \checkmark	2	phase'
(iiv)	waves do not completely cancel/ or reason for diff amplitudes \checkmark total path diff changed by $2 \checkmark$ so d = 7.5 cm \checkmark	2	explanation or consequence of diff. amplitudes Do not accept 'not completely' out of phase arguments. Incomplete cancelling MUST be related to diff. amplitudes. 7.5cm with no working scores 1
	Total	10	mark
8(a)	a = $3.0/0.80 \checkmark_{\rm m} = 3.75 \text{ m s}^{-2} \checkmark_{\rm e}$	2	accept 3.7 - 3.8
(b)(i)	drag force (air resistance) increases (with speed) \checkmark	2	
(ii)	so <u>resultant/effective/total force</u> decreases ✓ drag force & forward thrust identified ✓ resultant force = 0/balanced forces/equal & opposite ✓	2	take (i) and (ii) together accept 'forces in
(c)(i)	velocity decreases rapidly then at a decreasing rate \checkmark	2	equilibrium
(ii)	then travels at a <u>constant</u> velocity ✓ drag force (air resistance) becomes <u>greater than</u> thrust✓ drag force (again) balances/equal & opposite to thrust ✓	2	take (i) and (ii) together
	Total	10	

9	1.3 (m) ✓	1	
(a)(i)		_	
(ii)	v = 280 x 1.3 ✓ _{m, s} = 364 (m s ⁻¹) ✓ _e ecf	2	
(b)(i)	(f goes as \sqrt{T} so f increases by $\sqrt{2}$)	2	
	$f = \sqrt{2 \times 280} \checkmark_{m} f = 396 (Hz) \checkmark_{e} 3 \text{ s.f max}$		
(ii)	higher frequency \checkmark (µ) denominator becomes	2	average acceleration
	smaller ✓		would be greater
	correct discrement another standing wave on string	4	
(C)(I)		I	
(::)		0	
(11)	$\frac{method mark}{r} \neq m$ answer consistent with diagram	2	
	v _e	10	
	Total	10	
10	distance = $\sqrt{[(E_4)^2 + (72)^2]}$, (= 00 km)	2	scale diagram or
(2)	usiance = $\sqrt{(34)} + (72) \sqrt{m} = 90$ km	2	appropriately
(a)	$\tan \theta = 72/54 \checkmark_{\rm m} (= 53^{\circ})$		
			triangles argument
			are both accontable
(b)(i)	for clear, correct method $\sqrt{10}$ to obtain 1500 km h ⁻¹	2	
()((2 1	with angle scale
	* m identification/calculation/scale diagram of angle	I	diagram (correct
		1	
	<u>55</u> vector drawn towards K (linked with correct angle)/	I	scoro all 4 marks
	or correct 'bearing'		
(ii)	L will reach M at the same time $(OAW)\sqrt{1}$ ecf from	1	
(")	(b)(i)	•	
(c)	90 km apart so need to 'close' by 30 km $\sqrt{-10}$	3	Treat as
(0)	$t = 30/1500 = 0.02 \text{ h} (1/50 \text{ h}) \sqrt{3}$	U	independent marks
	$t = 0.02 \times 60 \times 60 = 72 \text{ s} \checkmark_{2}$		Watch for correct
			component variation
	Total	10	
	Section B Total	40	

11 (a)	for a situation where a quantum phenomenon is observed ✓	1	if not a quantum phenomenon zero marks total
(b)	clear diagram ✓✓✓ …with some minor omissions or errors ✓✓	3/2/1	
	for some attempt made ✓ labelled ✓	1	
(C)	for four separate relevant and correct items of description $\checkmark \checkmark \checkmark \checkmark$	4	
(d)	read as a whole up to 4 marks for relevant quantum ideas $\sqrt[4]{\sqrt{4}}$	4	Wave explanations score zero
	Total	13	
12 (a)	for a complete set of measurements required, <u>consistent</u> with (b)(ii). $\checkmark\checkmark$	2	Deduct 1 mark for any omissions. Mark parts (a) and
(b)(i)	for explaining each method of taking the specific measurements and stating appropriate measuring instruments $\sqrt{\sqrt{\sqrt{2}}}$	2 2	(b)(i) together
(ii)	for logical explanation as to how measurements used to calculate 'a' $\checkmark \checkmark \checkmark$	3	F=ma arguments score zero in this section but should be given credit elsewhere within the question.
(c)(i)	Credit two factors (reaction time/ parallax/etc as appropriate to method) which would affect the accuracy of the method	2	not friction as question refers to this motion
(ii)	relevant suggestion related to (c)(i) \checkmark explained \checkmark	2	
	Total	13	
QoWC	$\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{$	4	
	Section C Total	30	

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section C of the paper.

4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

Mark Scheme 2863/01 January 2007

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the *Advancing Physics* course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as *error carried forward*: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

For some of the longer descriptive questions three marks will be used (in scheme called the 1/2/3 style).

1 will indicate an attempt has been made

2 will indicate the description is satisfactory, but contains errors

3 will indicate the description is essentially correct

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1 Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3 The following annotations may be used when marking. <u>No comments should be written on</u> scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.
 - x = incorrect response (errors may also be underlined)
 - ^ = omission mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (in cases where candidates contradict themselves in the same response)
 - sf = error in the number of significant figures
- 4 The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.
- 5 In cases where candidates are required to give a specific number of answers, (eg 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6 Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7 Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8 An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

Г

			•			
Abbr anno conv the N	eviatior tations entions lark Scl	ns, and used in neme	m s e / ; NOT () _ ecf AW ora	 method mark substitution mark evaluation mark alternative and acceptable answers separates marking points answers which are not worthy of cr words which are not essential to ga (underlining) key words which <u>mus</u> error carried forward alternative wording or reverse argument 	s for the si edit ain credit <u>it</u> be used	ame marking point to gain credit
Qn	Level		E	xpected Answers	Marks	Additional guidance
1 a b c 2 a b		D A B Arrow pc arc throu	pinting t	o centre of Earth ✓ entred on centre of Earth ✓. Right	1 1 1 2	
~		angles to	<u>p</u> field.			
3 a b		5.1 x 10 ² 28/0.018	⁴ x 5.4 =1560	x 10 ⁻²⁴	2 1	27.5 ok. Not 27 ecf 1530 & 1500 ok for 27.5, 1555, 1600 OK for 28
4 a bi ii		9.7 x 10 ⁻³ x 10 000 \checkmark = 97. Curve starting at same rate \checkmark but with decreasing grad. \checkmark Student assumes constant decay rate \checkmark OR statement of what actually happens eg rate of decay falling with time \checkmark			1 2 1	Clear method or own answer Must not hit x axis. Accept 'decay is exponential' or descriptive alternative. Don't accept woolliness.
5a		F = (-)GN = 6.7 x 1 = 148 N	//m/r² √ 0 ⁻¹¹ x 6	.0 x 10 ²⁴ kg x650/(4.2 x 10 ⁷) ² √	2	
b		F = mv ² / v = 3100	r√ => v) (m s⁻¹	2 = 150 r/m = 150 x 4.2 x 10 ⁷ /650	3	Accept 3113 3090/3094 if 148 N used
6		pV = nR 298 √ = (T √=> r 0.098	n= 2.2 x 10 ⁵ x 1.1 x 10 ⁻³ / 8.3 x	2	Don't penalise 0.097
7		C = 5.6 >	< 10 ⁻³ / 1	$2 \checkmark = 4.7 \times 10^{-4} \checkmark F$	2	No sf penalty Don't accept 4.6

Section A Total 21

Qn	Level	Expected Answers	Marks	Additional guidance
8 (a)		$V = -GM/R = -6.7 \times 10^{-11} \times 7.4 \times 10^{22}/1.7 \times 10^{22}$	1	Need clear working
(i)		10 ⁶		or own value. Must
(a) (ii)		$ = -2.9 \times 10^{\circ} \text{ J kg}^{-1}$	1	be negative.
o(iiii)		GPE = $30 \times (-)2.9 \times 10^{\circ} = (-)8.7 \times 10^{\circ} J$	2	Nood cloor working
a(iii)		At large distance V is zero $\sqrt{2}$ and n e loss =	2	or own value
		k e gain $$		or own value.
				Or value of PE
				change for 1 st mark
(b) (i)		$Q = 1 \times 1.2 \times 10^3 \times (1500 - 90) \checkmark = 1.69 \times 10^6 J$	1	Total energy required
				per kg = 2.2 x 10 ⁶ J
(ii)		energy required = $(30 \times 1.7 \times 10^{\circ}) \checkmark + (4.8 \times 10^{5} \times 20)$	•	Max material melted
		$10^{\circ} \times 30$ = 6.5 x $10^{\circ} \checkmark$ comparison with k.e \checkmark	3	$= 8.8 \times 10^{\circ}/2.2 \times 10^{\circ}$
				- 40 kg S0 the fock
				melted
				Attempt at
				summation compared
				to k.e worth one mark
(c)		Holes/craters show that some k.e. goes to	2	eg energy for
		K.e. of ejected material.		compression/ejection.
				one mark
9 (a)(i)		-kx √ = ma √.	2	Or alternative
(ii)		For shm, a is proportional to $-x \checkmark$. This is the	2	Direction or -ve sign
		case as k and m are constants√.		needed for 1 st
(iii)		Clear evidence of derivation ✓.	1	marking point
(b)(i)		$\Gamma = 1/2$ × (2.8 × 10 ⁶ N m ⁻¹ /200.000) ^{1/2} /=	2	Expect $k/m = 4^{-2} r^{-1}$
(D)(I) (ii)		F = 1/2, X (2.0 X 10 N III /290 000)	2	Need clear working
(1)		$F = \frac{1}{2} \times 2.8 \times 10^6 \times 0.7^2 \sqrt{= 690 \text{ kJ}}$	•	or own value
(c)(i)			2	
		after one oscillation $A^2 = 0.7^2/2\sqrt{2}$		0.7 /1.4 = 0.5
		$A = (0.49/2)^{1/2} \checkmark = 0.5 m$		
		$350 \times 10^{\circ} = 0.5 \times 2.8 \times 10^{\circ} \times A^{-7}$: A = (2 × 350)		
		x 10 /2.8 x 10) V		
(c)(ii)		$E = \frac{1}{2} \times 2.8 \times 10^6 \times 0.5^2 \checkmark = 350 \text{ kJ} \checkmark$		
(-/(/			2	One mark for energy
		Iteratively or otherwise:		falls to 1/64 of
		$0.7/8 = 0.0875 \checkmark = 0.7/1.414^{n}$		original value or
(d)		via logs or otherwise N = 6 \checkmark .	1	calculation to that
		maximum amplitude of maxament at tap of		eπect. (10718J)
		$\frac{1}{1000}$		

10(a)(i)	No. of particles = $1000 \times 6 \times 10^{23}/18 = 3.3 \times 10^{23}$	2	Clear method or
	10^{25} \checkmark		calculated value.
(a)(II)	Energy = 2.3 x 10°/3.3 x 10 ²⁰ = $\sqrt{6.9}$ x 10 ²⁰ J	1	
h(i)	0.9 x 10 / 5.9 x 10 - 17.7*	1	1.5 x 10 ⁻⁸ if 18 used
b(ii)	$f = e^{-17.7} = 2.1 \times 10^{-8} \checkmark$	1	$\frac{1}{2}$ square tolerance &
b(iii)	accurate plot, ecf ✓	-	ecf
. ,	sensible plot ✓ Straight line acceptable if		
	candidate point suggest it. Not acceptable for f = 2.1×10^{-8}		
(c)(i)	E/KT becomes smaller √E/kT becomes less	2	
()()	-ve. \checkmark AW eg symbolically: f =1/e ^{E/kT} \checkmark		Need to talk through
	increased T means smaller fraction ✓		maths here.
(ii)		2	
(:::)	Bigger t therefore greater	0	Do not accept 'more
(111)	proportion/probability \checkmark with sufficient <u>energy</u> to escape $\checkmark \Delta W$	2	particles of more
	io escape. • Avv		marking points
	Boltzmann factor nearly doubles, \checkmark therefore		
	rate doubles√		More precise <i>f</i> ratio
			acceptable.
			Rate or 'in the same
			time' etc
11 (a)	lest described fully. \checkmark performed on three		One mark for two
		4	(values: 0.22, 0.096
		-	$0.16 \text{ m s}^{-1} \text{ lv}^{-1}$) or
			reciprocal:
			4.5, 10.4,6.1
11 (b)	1. $x 10^{7}/1.4 \times 10^{8} \times 3 \times 10^{8} \times 3.2 \times 10^{7} \sqrt{-1.7}$	3	One mark for
	$X 10^{-17} \checkmark$		distance conversion $(4.2(4)) \times 40^{24}$
	$1.7 \times 10^{-7}/2.2 \times 10^{-7} = 7.7 \vee$		cloar comparision
			needed for (ii)
(c) (i)	Increase in wavelength ✓	1	Hope for
. , . ,	5-		more.(photon energy
(ii)	Light expands with (expanding)	2	answers, if seen,
	space, \checkmark longer time of travel gives more		acceptable)
	expansion/lengthening.		

QWC on 8(a) (iii), 8 c, 9 (d), 11(c)(i) &(ii)

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

Mark Scheme 2864/01 January 2007

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the scheme are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidate's working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1 Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- Please mark all post-standardisation scripts in red ink. A tick (\checkmark) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. Ticks should **not** be placed in the righthand margin. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks ($^{1}/_{2}$) should never be used.
- 3 The following annotations may be used when marking. <u>No comments should be written on</u> <u>scripts unless they relate directly to the mark scheme. Remember that scripts may be</u> <u>returned to Centres.</u>
 - × = incorrect response (errors may also be underlined)
 - ~ = omission of mark
 - bod = benefit of the doubt (where professional judgement has been used)
 - ecf = error carried forward (in consequential marking)
 - con = contradiction (where candidates contradict themselves in the <u>same</u> response sf = error in the number of significant figures
 - up = omission of units with answer
- 4 The marks awarded for each <u>part</u> question should be indicated in the right-hand margin. The mark <u>total</u> for each double page should be ringed at the bottom right-hand side. These totals should be added up to give the final total on the front of the paper.
- 5 In cases where candidates are required to give a specific number of answers, mark the first answers up to the total required. Strike through the remainder.
- 6 The mark awarded for Quality of Written Communication in the margin should equal the number of ticks under the phrase.
- 7 Correct answers to calculations should obtain full credit even if no working is shown, unless indicated otherwise in the mark scheme.
- 8 Strike through all blank spaces and pages to give a clear indication that the whole of the script has been considered.

The following abbreviations and conventions are used in the mark scheme:

- m = method mark
 s = substitution mark
 e = evaluation mark
 / = alternative correct answers
 ; = separates marking points
 NOT = answers which are not worthy of credit
 () = words which are not essential to gain credit
 = (underlining) key words which must be used to gain credit
- ecf = error carried forward
- ora = or reverse argument
- eor = evidence of rule

1 (a)	Wb m ⁻²	1
1 (b)	Wb s ⁻¹	1
2 (a)	four parallel lines at right angles to plates IGNORE extra lines	1
	evenily spaced (by eye) arrow to the right	1
	ACCEPT correct edge effects	
2 (b)		1
	0 V -26 V	
	14 60	
3 (a)	measures maximum gradient (= 1.5 ± 0.2 Wb per ms)	1
	ecf incorrect gradient: emf = $1.5 \pm 0.2 \times 10^3$ V	1
3 (b)	sine curve of correct period and constant amplitude	1 1
		·
	flux linkage / Wb	
	2	
	0 1 2 3 4 5 6 7 8 -1	
3 (c)	3	1
	insert iron core/increase area of coil/frequency/flux/flux density/stronger magnet	
	NOT increase width of coil wires/more turns of wire	

4	${}^{240}_{93}Pu + \frac{1}{0}X \rightarrow {}^{241}_{94}Am + {}^{0}_{-1}e + {}^{0-}_{0}v$	1
	no ecf: neutron	1
5	BA	1
6	correct shape, curves up from X on both sides ecf: crossing each field line at right angles (by eye) point charge	1
7	$E_{\rm k} = kQq/r$ (eor)	1
	Q = 79e = 1.26×10^{-17} C, q = 2e = 3.2×10^{-19} C	1
	$E_{\rm k} = 9.0 \times 10^9 \times 79 \times 2 \times (1.6 \times 10^{-19})^2 / 1.2 \times 10^{-13} = 3.0 \times 10^{-13} {\rm J}$	1

8 (a) (i)	-14 × 1.6×10 ⁻¹⁹ = - <u>2.</u>	<u>2</u> ×10 ⁻¹⁸ J	1
8 (a) (ii)	[1] per correct line (l	by eye)	2
	n = 3 at between 2.0) and 2.5	
	n = 2 at between 5.0		
	10		
	energy/10 ⁻¹⁹ J	<i>n</i> = 3	
	-5 -	<i>n</i> = 2	
	-10 -		
	45		
	-15-		
	-20-		
	-	<i>n</i> = 1	
	-25 -		
	20		
8 (a) (iii)	As the electron leav	es the proton, its potential energy has to increase	1
0 (u) (iii)	When electron is se	parate from proton, potential energy is zero.	1
	ACCEPT energy for	potential energy	
0 (1) (1)			
8 (D) (I)	atom excited to $n =$	$\frac{2}{19}$ state by collision with electron	1
	ACCEPT 5.5 rounde	$5 - (22 \times 10^{-5} \times 10^{-9}) = (1 \times 10^{-5})$	1
8 (b) (ii)	ecf incorrect transiti	on: $E = hf$, $c = f\lambda$	1
	$\lambda = ch/E = 3 \times 10^8 \times 6$	$5.6 \times 10^{-34} / (22 \times 10^{-19} - 5 \times 10^{-19}) = 1.2 \times 10^{-7} \text{ m}$	1
	ACCEPT $3 \times 10^8 \times 6$.	6×10 ⁻³⁴ /18×10 ⁻¹⁹ = 1.1×10 ⁻⁷ m for [1]	
8 (b) (iii)	electron raised to n	= 3 by the collision	1
	photons emitted by	n = 3 to $n = 2$, $n = 2$ to $n = 1$ and $n = 3$ to $n = 1$	1

9 (a) (i)	$m = 241 \times 1.7 \times 10^{-27} = 4.1 \times 10^{-25} \text{ kg}$	1
	$N = 2.0 \times 10^{-10} / 4.1 \times 10^{-25} = 4.9 \times 10^{14}$	1
	ACCEPT reverse calculation for [2]	
	ACCEPT $2.0 \times 10^{-10} / (241 \times 1.7 \times 10^{-27})$ for [2]	
	(100 k for sensible order of calculation)	
	NOT eg 2.0×10 $^{-7}/241 = 8.3 \times 10^{-6}$ then $8.3 \times 10^{-7}/1.7 \times 10^{-6}$	
9 (a) (ii)	$\lambda = 0.69/T_{0.5}$	0
	$\lambda = 0.69/1.5 \times 10^{10} = 4.6 \times 10^{-11} \text{ s}^{-1}$	1
9 (a) (iii)	$A = \lambda N$	0
	$A = 4.6 \times 10^{-11} \times 4.9 \times 10^{14}$	1
	$A = 2.3 \times 10^4 \text{ Bq}$	I
	ACCEPT 2.5×10^4 Bq for 5×10^{-11} s and 5×10^{14}	
9 (h)	alpha particles stopped by the walls of the detector/a few cm of air	1
0 (0)	because easily absorbed/low penetration/highly ionising/interact	1
	strongly with matter (wtte)	-
9 (c) (i)	ecf incorrect activity:	
	energy absorbed = $2.3 \times 10^4 \times 0.01 \times 8.7 \times 10^{-13} \times 3.2 \times 10^7 = 6.4 \times 10^{-3} \text{ J}$	1
	$A = 2.5 \times 10^4$ Bq gives 7.0×10^{-2} Sv	
	ect incorrect energy absorbed:	1
	absorbed dose = $20 \times 6.4 \times 10^{-3}/2.0 = 6.4 \times 10^{-2}$ Sv	I
	rick coloridation on 0.4 , 40^2 , $2 = 0.20$ rick nerve on (with orf)	1
9(0)(1)	13 r calculation eg 6.4×10 × 3 = 0.2% 13 k per year (with ecr)	2
	 dose is large compared to background 	2
	 dose is large compared to background dose unlikely to be shared evenly over whole lung 	
	 material possibly removed from lungs in a short time 	
	 all of material could be absorbed by one person, not just 1% 	
	• cancer is not certain over a lifetime (10 % risk in 50 years)	
	NOT small risk compared to being burnt to death	
1		

-		
10 (a) (i)	two complete non-crossing loops through the coil which pass through the iron core and bar	1 1
10 (a) (ii)	 any of the following, maximum [2] current creates field/flux in coil which magnetises iron poles created where flux leaves/enters iron different poles attract/flux loops try to contract (upwards motion of bar) shortens flux loops 	2
10 (b) (i)	improved magnetic circuit (wtte) eg less air so more permeability/less reluctance/more permeance NOT more flux NOT permittivity	1
10 (b) (ii)	 any of the following, maximum [3] more cells in battery/higher voltage more turns of wire lower resistance/greater conductance coil/thicker wires shorter iron loop remove lamp from circuit References to changes of area of the core are neutral NOT laminate the core/more current/tighter coil 	3
10 (c)	flux linkage/density of coil decreases (wtte) NOT changes/increases generating emf/current in <u>coil</u>	1 1
10 (d)	(eddy) currents in the core (wtte) caused by changing/alternating flux in the core transfer <u>electrical/magnetic</u> <u>energy</u> to (heat energy) (wtte)	1 1 1

11 (a) (i)	$p = h/\lambda$ (eor)	1
	$p = 6.6 \times 10^{-7} / 4.8 \times 10^{-10} = 1.4 \times 10^{-10} \text{ N s}$	1
	$\Delta CCEPT$ only 6.6×10 ⁻³⁴ × 3×10 ⁸ /4.8×10 ⁻¹⁵ = 4.1×10 ⁻¹¹ for [1]	•
	ACCEPT correct answer via $c = f\lambda$ for [1]	
11 (a) (ii)	$E = 4.1 \times 10^{-11}/1.6 \times 10^{-19} = 2.6 \times 10^8 \text{ eV}$ (conversion from J to eV)	1
	ecf: answer = $2.6 \times 10^8 / 100 \times 10^3 = 2600$ times	1
	4×10 ¹¹ J gives 2500 times	
11 (b)	portion of the curve between 40° and 50°	1
	ntenerence pattern caused by partial cancellation of electron phasors/wayes passing both sides of proton	I
	NOT just diffraction	
11 (c)	what is observed:	
	large angle scattering increases	1
	lots of new particles created	1
	proton made of three quarks	1
		I

Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in Section B of the paper.

- 4 The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.
- 3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.
- 2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.
- 1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.
- **0** The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

Mark Scheme 2865 January 2007

Physics B (Advancing Physics) mark schemes - an introduction

Just as the philosophy of the Advancing Physics course develops the student's understanding of Physics, so the philosophy of the examination rewards the candidate for showing that understanding. These mark schemes must be viewed in that light, for in practice the examiners' standardisation meeting is of at least equal importance.

The following points need to be borne in mind when reading the published mark schemes:

- Alternative approaches to a question are rewarded equally with that given in the scheme, provided that the physics is sound. As an example, when a candidate is required to "Show that..." followed by a numerical value, it is always possible to work back from the required value to the data.
- Open questions, such as the questions in section C permit a very wide variety of approaches, and the candidate's own approach must be rewarded according to the degree to which it has been successful. Real examples of differing approaches are discussed in standardisation meetings, and specimen answers produced by candidates are used as 'case law' for examiners when marking scripts.
- Final and intermediate calculated values in the schemes are given to assist the examiners in spotting whether candidates are proceeding correctly. Mark schemes frequently give calculated values to degrees of precision greater than those warranted by the data, to show values that one might expect to see in candidates' working.
- Where a calculation is worth two marks, one mark is generally given for the method, and the other for the evaluation of the quantity to be calculated.
- If part of a question uses a value calculated earlier, any error in the former result is not penalised further, being counted as error carried forward: the candidate's own previous result is taken as correct for the subsequent calculation.
- Inappropriate numbers of significant figures in a final answer are penalised by the loss of a mark, generally once per examination paper. The maximum number of significant figures deemed to be permissible is one more than that given in the data; two more significant figures would be excessive. This does not apply in questions where candidates are required to show that a given value is correct.
- Where units are not provided in the question or answer line the candidate is expected to give the units used in the answer.
- Quality of written communication will be assessed where there are opportunities to write extended prose.

ADVICE TO EXAMINERS ON THE ANNOTATION OF SCRIPTS

- 1 Please ensure that you use the **final** version of the Mark Scheme. You are advised to destroy all draft versions.
- Please mark all post-standardisation scripts in red ink. A tick (✓) should be used for each answer judged worthy of a mark. Ticks should be placed as close as possible to the point in the answer where the mark has been awarded. The number of ticks should be the same as the number of marks awarded. If two (or more) responses are required for one mark, use only one tick. Half marks (½) should never be used.
- 3 The following annotations may be used when marking. <u>No comments should be written on</u> scripts unless they relate directly to the mark scheme. Remember that scripts may be returned to Centres.

x = incorrect response (errors may also be underlined)

^ = omission mark

- bod = benefit of the doubt (where professional judgement has been used)
- ecf = error carried forward (in consequential marking)
- con = contradiction (in cases where candidates contradict themselves in the same response)
- sf = error in the number of significant figures
- 4 The marks awarded for each <u>part</u> question should be indicated in the margin provided on the right hand side of the page. The mark <u>total</u> for each double page should be ringed at the end of the question, on the bottom right hand side. These totals should be added up to give the final total on the front of the paper.
- 5 In cases where candidates are required to give a specific number of answers, (eg 'give three reasons'), mark the first answer(s) given up to the total number required. Strike through the remainder. In specific cases where this rule cannot be applied, the exact procedure to be used is given in the mark scheme.
- 6 Correct answers to calculations should gain full credit even if no working is shown, unless otherwise indicated in the mark scheme. (An instruction on the paper to 'Show your working' is to help candidates, who may then gain partial credit even if their final answer is not correct.)
- 7 Strike through all blank spaces and/or pages in order to give a clear indication that the whole of the script has been considered.
- 8 An element of professional judgement is required in the marking of any written paper, and candidates may not use the exact words that appear in the mark scheme. If the science is correct <u>and</u> answers the question, then the mark(s) should normally be credited. If you are in doubt about the validity of any answer, contact your Team Leader/Principal Examiner for guidance.

m s e / ; NOT () ecf AW ora					
Qn	Expected Answers	Marks	Addition	nal guidance	
1 (a)	 (i) Spacing decreasing/non-linear owtte√ / Specify constant ratio/equal spacing for doubling of y-values √ √ (ii) Gives a straight line ✓ Easier to confirm if straight√ (iii) Suddenly/ around 1950√ (Significantly) steeper after√ 	2 2 2	ii Reward based on analysis o gradient	answer possible of line eg	
(b)	(i) Population between 6×10^9 and $8 \times 10^9 \checkmark$ Consumption will be $(7\pm1) \times 10^9 \times 68 \times 10^9 =$ 4.1×10^{20} to $5.4 \times 10^{20} \approx 5 \times 10^{20}$ J \checkmark (ii) Lifetime = $4 \times 10^{22}/5 \times 10^{20} = 80$ years \checkmark (iii) Energy demand per capita likely to increase/population will not be constant/price increase may cut consumption/ different sources may be found \checkmark	2 1 1	i Reverse argument OK ii ecf 4×10 ²⁰ J→100 yrs 5.4×10 ²⁰ J→74 yrs Any reasonable point		
		10			
$\begin{vmatrix} 2 \\ (2) \end{vmatrix}$	Ring around second cross from the right \checkmark	1			
(b)	Nucleus contains only one nucleon owtte ✓	1	Needs re other protons/n nucleons atoms, el	ference to eutrons/ , not eg ectrons	
(C)	Obtaining binding energy per nucleon from graph (between -7.0 and -7.1 MeV) \checkmark so total binding energy = 4 × binding energy per nucleon \approx -28 MeV \checkmark	2			
(d)	$\Delta m = -(6.6240 - 2 \times 1.6693 - 2 \times 1.6675) \times 10^{-27}$ kg = -4.96 × 10 ⁻²⁹ kg \checkmark m \checkmark e So binding energy = mc ² = -4.96 × 10 ⁻²⁹ x 9 × 10 ¹⁶ = -4.46 × 10 ⁻¹² J \checkmark	3	Confusion gets \checkmark m $E=mc^2$ no method n values	n with 10 ⁻²⁷ only. Quoting ot enough for nark: needs	
		7			

Qn	Expected Answers	Marks	Additional guidance
3	Choosing point and finding constant from PE, r		√m√e
(a)	 showing this is consistent for another 		method mark requires
	point / Method involving inverse proportion	2	two identifiable
(h)	(double one, haive the other) \checkmark verification \checkmark	Z	readings
(u)	(I) 1.44 MeV = 1.44 × 10° X 1.0 × 10° J = 0.2 × 10^{-13} L = 1.2 × 10^{-13} L = 2.2 × 10^{-13} L	1	
	$= 2.3 \times 10^{10} \text{ J} = 1.2 \times 10^{10} \text{ J} \text{ each } \approx 1 \times 10^{10} \text{ J}$	1	
	$(ii) kT = 1.4 \times 10^{-23} \times 1.5 \times 10^7 = 2.1 \times 10^{-16} k$	1	Can attempt to
	(ii) $F/kT = 1.2 \times 10^{-13} / 2.1 \times 10^{-16} = 570 \sqrt{10^{-10}}$		calculate the
	This is well outside the $15 - 30 kT$ range so	2	Boltzmann factor(≈ 0)
	reaction is extremely unlikely \checkmark	-	
(c)	Equal and oppositely-facing pairs of arrows on		
(0)	each pair of protons \checkmark		
	Lower arrows 4 × longer (by eye) than upper	2	Right arrow reaches
	ones ✓		point level with 'the' in
			stem above ('of the
			forces')
(d)	(i) $pV=nRT \checkmark \Rightarrow n = pV/RT = 3.4 \times 10^{16} x$		
	$1/(8.3 \times 1.5 \times 10^7)$		
	= $2.7 \times 10^8 \approx 3 \times 10^8$ mol m ⁻³ \checkmark	3	
	Assume ideal gas behaviour owtte 🗸		
	(ii) $N = nN_A = 2.7 \times 10^8 \times 6.0 \times 10^{23}$	1	3× 108 gives 1.8×
	$= 1.6 \times 10^{32} \approx 2 \times 10^{32} \mathrm{m}^{-3}$		1032
	(iii) Volume of one particle = $1/2 \times 10^{32} = 6.1 \times 10^{32}$	1	
	10 ⁻³⁵ m ³		ect from (I) and (II)
	mean separation = $\sqrt[3]{(5 \times 10^{-33})}$ = 1.8 × 10 ⁻¹¹ m		aives 1.87 × 10.11 m
	✓		gives 1.07 × 10-11 III
	Need a large (abanging) flux in the places (13	
4	Need a large (changing) flux in the plasmav		Any one valid naint
(a)	large cross sectional area/as short a circuit as		
	nossible/increase permeance $$	2	
(h)	Plasma current produced by induced emf/need	-	Any two points
	changing flux to induce emf in plasma/constant		
	direct current produces constant flux \checkmark	2	
(c)	Graph B ✓	1	
(d)	(i) and (ii) Movement parallel to flux lines has	·····	Mark these two parts
(~)	zero force \checkmark so no effect on motion \checkmark		together. Any three
	movement at an angle to flux lines has a force		valid points
	perpendicular to flux v and also perpendicular		
	to movement \checkmark so direction of movement will	3	
	change ✓		
		8	

Qn	Expected Answers	Marks	Additional
			guidance
5	(i) $P = I^2 R = (3 \times 10^6)^2 \times 5.0 \times 10^{-7} = 4.5 \times 10^6 W$		Can calculate
(a)	which is a few MW ✓ m ✓ e	2	V= 1.5 V and
	(ii) Number $s^{-1} = 1.0 \times 10^{6}/1.6 \times 10^{-19} = 6.3 \times 10^{24}$	2	use P=IV.
	√m√e		
	f = 1/T = 1/(4 × 10 ⁻ °) = 2.5 × 10′ Hz (25 MHz) ✓	1	Ignore
(b)			missing/incorre
			ct units
(C)	(i) 60 kV/60 000 V ✓	1	
	(ii) ions entering (twisted) magnetic field will be		
	affected by field/deflected off course	1	
	(iii) 9.6 × 10 ⁻¹⁵ = 0.5 × 3.3 × 10 ⁻²⁷ × v^2		
	$v = \sqrt{(9.6 \times 10^{-15} / (0.5 \times 3.3 \times 10^{-27}))}$		
	$= 2.4 \times 10^{6} \text{ m s}^{-1} \approx 2 \times 10^{6} \text{ m s}^{-1} \checkmark \text{m} \checkmark \text{e}^{-1}$	2	
		9	
6	(i) (Lengths 10,10, 50 and 10 mm: no mark for		Allow 6 & 46 for
(a)	these)		arrow
	2 × 10 - 3 × 10 = 4 × 10 - 1 × 50	_	measured
		2	without heads
	Appreciating vector nature of $p \checkmark$		Can do either or
	Establishing same sum before and after \checkmark	2	both parts
			algebraically in
	$(II) \frac{1}{2} \times 2 \times 10^2 + \frac{1}{2} \times 3 \times 10^2 = 250$		terms of v , $-v$, -
	$\frac{1}{2} \times 4 \times 10^{2} + \frac{1}{2} \times 1 \times 50^{2} = 1450 > 250 \checkmark \text{m} \checkmark \text{e}$		5V
			Must attempt to
			cal KE for all
(6)	No of neutrons/s = $100 \times 10^{\circ}/(15 \times 10^{\circ} \times 1.6 \times 10^{19})$	0	2.4 ×10 J with
(D)	$= 4.0 \times 40^{19} = 1.4 \times 10^{19}$	Z	no justification
(-)	$= 4.2 \times 10^{-11} \text{ S} \times 10^{-12} \text{ G}$		not acceptable
(C)	(i) Absoluted energy/year = $1 \times 10^{-1} \times 2.4 \times 10^{-1} = 0.24$	2	
	U.24 JV Absorbed dees /10 years =0.24 lx10/EE kg =	2	
	Absoluted dose / 10 years $-0.243 \times 10/55$ kg $-$	2	
	(ii) Any two relevant points for increased damage	2	
	a create new radioisotones in body which		iii Allow apower
	roduce ionising radiation		
	(iii) Any two clearly distinct methods or one		damage to
	method with further detail an greater shielding	2	worker without
	with good absorber of neutrons (such as boron)	<u> </u>	actually making
	$\sqrt{monitor}$ dose received by workers on a regular		environment
	hasis $\sqrt{1}$ and move to less hazardous site if dose		safer
	is becoming too high \checkmark		
		12	
L			

7	(i) RGV on left/VGR on right ✓	1	Wrong on oe side and
(a)	(ii) Set of spectral lines nearest to straight-on		right on other = 0
	direction/lines given by $n = 1$ in $n\lambda = d \sin \theta \checkmark$	1	
	(iii) All wavelengths superpose constructively at		
	this point/ θ = 0 is a solution for all values of	1	
	λ when $n = 0 \checkmark$	-	
	(iv) <i>d</i> = 1 × 10 ⁻³ /600 = 1.67 × 10 ⁻⁶ m ✓	3	
	λ = 1.67 × 10⁻ੰ sin (19.1°) = 545 nm √m√e		Unreasonable λ does
			not gain ✓ e
(b)	No distinct lines/continuous range of	1	
(-)	wavelengtns ✓.		
(C)	(i) $f = c/\lambda \checkmark = 3 \times 10^{\circ}/(4.4 \times 10^{\circ}) = 6.8 \times 10^{\circ}$ Hz	0	
		2	7 · · 10 ¹⁴ L = si · · · ·
	(ii) $E = ht = 6.6 \times 10^{-4} \times 6.8 \times 10^{14} = 4.5 \times 10^{15}$	2	7×10 Hz gives
	J ✓ M ✓ e		
(a)	(I) Circuit with power supply & lamp + correct	4	Allow correct
	ammeter + voltmeterv	1	alternatives. Mark (I)
	(II) Quote $P=IV \neq Explain calculation and comparison \mathcal{A}$	2	and (II) together.
		11	
		14	
8	Infrared V	1	
(a)			
(b)	(i) extra pulse distance = $3 \times 10^8 \times 7 \times 10^{-9} = 2.1$	2	Allow reverse
	m ✓	-	argument
	This is there and back, so car has moved 1.05 m	2	
	≈ 1m ✓		1.0 m gives 16.7 m s
	(ii) Speed = $1.05 / (60 \times 10^{-3}) = 17.5 \approx 18 \text{ m s}^{-1}$	•	Can do as fraction of $\frac{1}{2}$
		2	$(II) = 18 \times (0.177) \text{ m s}^{-1}$
	(iii) Pulse distance in 0.1ns = $3 \times 10^{\circ} \times 0.1 \times 10^{\circ}$ =		(e.c.t. possible)
	0.03 m there and back so uncertainty in distance		
	≈ 0.015 m so speed uncertainty = 0.015/(60×10		
(-)) = 0.25 m s ∨ m∨ e		ludge eemesterale bu
(C)			Judge correct angle by
	to spec		eye. Component
	gun		than voctor given
		1	than vector given.
	×		
	(ii) $\tan \theta = 10/25 \text{ so } \theta = 21.8^{\circ} = 22^{\circ} \checkmark$		
	Component of car towards gun = $\cos \theta \times 30 \text{ m s}^{-1}$	-	
		3	Allow along to 0 as
	$30 \times \cos 22^\circ = 28 \text{ m s}^- / \text{m} \sqrt{\text{e}}$	~	Allow close to U as
	(III) zero under bridge (distance = 0) \checkmark	2	2010
	rises and levels off as distance increases ✓	40	
		13	

QoWC Marking quality of written communication

The appropriate mark (0-4) should be awarded based on the candidate's quality of written communication in the whole paper.

4 max The candidate will express complex ideas extremely clearly and fluently. Answers are structured logically and concisely, so that the candidate communicates effectively. Information is presented in the most appropriate form (which may include graphs, diagrams or charts where their use would enhance communication). The candidate spells, punctuates and uses the rules of grammar with almost faultless accuracy, deploying a wide range of grammatical constructions and specialist terms.

3 The candidate will express moderately complex ideas clearly and reasonably fluently. Answers are structured logically and concisely, so that the candidate generally communicates effectively. Information is not always presented in the most appropriate form. The candidate spells, punctuates and uses the rules of grammar with reasonable accuracy; a range of specialist terms are used appropriately.

2 The candidate will express moderately complex ideas fairly clearly but not always fluently. Answers may not be structured clearly. The candidate spells, punctuates and uses the rules of grammar with some errors; a limited range of specialist terms are used appropriately.

1 The candidate will express simple ideas clearly, but may be imprecise and awkward in dealing with complex or subtle concepts. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling may be noticeable and intrusive, suggesting weakness in these areas.

0 The candidate is unable to express simple ideas clearly; there are severe shortcomings in the organisation and presentation of the answer, leading to a failure to communicate knowledge and ideas. There are significant errors in the use of language which makes the candidate's meaning uncertain.

Advanced GCE Physics B (Advancing Physics) 3888/7888 January 2007 Assessment Series

Unit		Maximum Mark	а	b	С	d	е	u
2860	Raw	90	64	57	51	45	39	0
	UMS	100	80	70	60	50	40	0
2861	Raw	90	60	53	46	40	34	0
	UMS	110	88	77	66	55	44	0
2862	Raw	120	97	85	73	62	51	0
	UMS	90	72	63	56	48	36	0
2863A	Raw	127	96	85	75	65	55	0
	UMS	100	80	70	60	50	40	0
2863B	Raw	127	96	85	75	65	55	0
	UMS	100	80	70	60	50	40	0
2864A	Raw	119	87	77	68	59	50	0
	UMS	110	88	77	66	55	44	0
2864B	Raw	119	87	77	68	59	50	0
	UMS	110	88	77	66	55	44	0
2865	Raw	90	60	54	49	44	39	0
	UMS	90	72	63	56	48	36	0

Unit Threshold Marks

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3888	300	240	210	180	150	120	0
7888	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3888	12.4	34.0	59.2	81.2	95,2	100.0	251
7888	11.5	38.5	73.1	94.2	96.2	100.0	53

For a description of how UMS marks are calculated see; <u>http://www.ocr.org.uk/exam_system/understand_ums.html</u>

Statistics are correct at the time of publication

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Customer Contact Centre

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552 Facsimile: 01223 552553

